AP® Computer Science A

AP® Computer Science A

AP® Computer Science A

Advanced Placement® Computer Science A is a fast-paced course equivalent to a college introductory programming class. Students will learn about the exciting kinds of problems tackled by computer science while exploring the field’s most important tool—programming. The focus will be on developing systematic problem-solving strategies that can be applied to real-world problems. The course will be anchored around projects that will explore a broad range of fields that use programming to solve problems. Through these projects, students will study common, reusable algorithms and learn to analyze them for correctness and speed.

The course will cover fundamentals of programming syntax and methodology using the Java programming language. Java is a modern, object-oriented programming language used to create professional software. In addition to gaining fluency in Java, students will develop general skills and understandings in computer science.

Prerequisites

Students enrolled in this course are expected to have successfully completed Algebra 1 or its equivalent. They must also have strong writing and reading comprehension skills, since much of the practice of computer science requires clear communication of ideas and concepts.

Course materials

Reges, Stuart, and Stepp, Martin. Building Java Programs: A Back to Basics Approach. 2d ed. (Boston: Addison-Wesley, 2011).

College Board. AP GridWorld Case Study. (New York: College Entrance Examination Board, 2006).

College Board. AP Computer Science Quick Reference Guide. (New York: College Entrance Examination Board, 2006).

Philosophy

This course will emphasize procedural decomposition, object use and algorithm design early in the curriculum. Writing object classes will be covered in the latter part of the course to insure that students have a solid foundation in programming fundamentals before moving on to more advanced topics in object-oriented software. Each new concept will be presented in a short, interactive lecture and be followed up by small-scale programming exercises. Students will then complete larger projects that use programming to explore interesting problem domains. Short quizzes similar to the small-scale programming exercises will provide students with frequent feedback on the depth of their understanding of the material.

Goals

Successful completion of this course and its projects will prepare students for the AP® exam and for a second-semester college programming course. Students will be able to:

· identify and discuss the major hardware and software components of a computer system

· recognize the ethical and social implications of computer use and software creation

· design, implement and debug computer-based solutions to problems in diverse application areas

· use, implement and analyze common algorithms and data structures

· write clear and efficient code using good Java syntax and programming style

· know when and how to use Java library classes

· read, understand and contribute to large programs consisting of several classes

Standard Algorithms

As part of the study of programming techniques, students will learn to use, analyze and implement a number of common algorithms. By the end of the course, students will be able to recognize and analyze linear and binary search as well as insertion, selection and merge sort. Furthermore, they will know how to use the Comparable interface to implement these for object types.

GridWorld

A major component of this course will be learning to work within a large existing code base. The College Board case study GridWorld will be used to introduce object-oriented concepts. In addition to understanding the GridWorld narrative, students will complete several projects utilizing the GridWorld framework. These projects include creating a 15-puzzle game, a snake game and an ant farm simulation.

Course Planner

	Week
	Topics
	BJP Reference
	Activities
	Assessments

	First Semester

	1
	Logistics

Programming/Java definition

println

methods
	1.1 - 1.2
	Logic puzzles and ball-parking to introduce computational thinking (30 min in class)
	

	2
	Flow control

Expressions

Variables

Coding conventions

Ethics: hacking
	1.4-1.5, 2.1-2.2
	Procedural decomposition problem (ASCII shapes) (2 hrs in class)
	

	3
	Definite loops

Nested loops
	2.3
	Worksheet - println, methods, expressions

Variables and loops practice (1 hr in class)
	Song project (procedural decomposition) (2 hrs in class)

println, methods, expressions quiz

	4
	Nested loops

Pseudocode

Class constants
	2.4-2.5
	Complex figures (1hr in class)
	Space Needle project (3 hrs in class)

	5
	Scope

Parameters
	3.1
	Parameters practice (2 hrs in class)
	Nested loops quiz (retake)

	6
	Using objects

DrawingPanel

Procedural decomposition with graphics
	3G.1-3G.3
	Graphics practice (2 hrs in class)
	

	7
	Interactive programs using Scanner

Packages

Math class
	3.3, 3.2
	Math and Scanner practice (2 hrs in class)
	Café Wall project (3 hrs in class)

	8
	Conditionals

Return
	3.2, 4.1, 4.4, 4.5
	Conditionals and return practice

Parameters, loops, Math review
	Cumulative quiz

	9
	Cumulative algorithms
	4.2
	
	Birthday project (4 hrs in class)

	10
	Strings

Text processing
	3.3, 4.3
	Strings practice (3 hrs in class)
	

	11
	Indefinite loops

Fencepost, sentinel loops
	5.1, 5.2
	Strings practice
	Name generator project (4 hrs in class)

	12
	File reading with Scanner

Line-based file input
	6.1-6.4
	Programming contest practice
	Cumulative quiz

	13
	Searching a file

Ethics: data privacy
	6.5
	
	Baby names project (4 hrs in class)

	14
	Arrays
	7.1
	Array practice
	

	15
	Reference semantics

Arrays for tallying

Writing to files
	7.7, 7.3
	Group arrays warm-up

Tally arrays practice
	

	16
	
	
	
	DNA project (5 hrs in class)

Strings, file reading, arrays quiz

	17
	Assertions

2D Arrays
	5.5, 7.5
	ASCII image processing
	

	18
	Boolean logic
	5.3
	Practice semester exam
	Semester exam

	Second Semester

	1
	Object-oriented programming

Classes

Constructors

Encapsulation
	8.1-8.4
	Point class implementation

Car class implementation
	Paper on implications of computing

	2
	ArrayLists

Wrapper classes

Object composition
	10.1
	ArrayList practice (2 hrs in class)
	ShoppingCart assignment (5 hrs in class)

	3
	Inheritance

GridWorld part 1,2
	9.1
	SpiralBug, ZBug, DancingBug
	Array, ArrayList, classes quiz

	4
	GridWorld part 3
	
	
	Snake game project

	5
	
	
	
	Fifteen puzzle project

	6
	GridWorld part 4
	
	Critter practice

2010 GridWorld FRQ (on paper)
	Critter mini-quiz

	7
	Interfaces (Comparable, List)

Abstract classes
	9.5
	Weight class

Playing cards
	

	8
	Super class

Polymorphism
	9.2, 9.3, 9.6
	
	Ant Farm project

	9
	AP multiple choice questions
	
	20 question practice
	

	10

11
	Complexity

Binary search

Sorts

Comparable

Recursion
	13.1-13.3
	Search/sort multiple choice
	

Students will spend the month after the AP exam creating a project of their choice.
Page 2 of 5
Page 3 of 5

